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Synonyms
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Introduction

The analysis of social networks in scientific inno-
vation has seen a remarkable boom since the late
1990s: research on networks has developed into
an interdisciplinary field comprising numerous
mathematicians, physicists, and computer spe-
cialists, and no longer solely anthropologists,
psychologists, and sociologists. A major reason
for this boom is the availability of larger data sets
and greater computer capacities for analyzing
these data. Today, analyses quite commonly
focus on co-publications with tens of thousands
of researchers, co-citations between several mil-
lion papers, or patent applications over periods of
several decades. These data sets have improved
the possibilities of investigating the mechanisms
of network evolution and their role in scientific
innovation (Chen and Redner 2010; Jones et al.
2008; Fleming et al. 2007; Wuchty et al. 2007;
Newman et al. 2006; Powell et al. 2005).

This entry discusses key questions to approach
selected findings from recent literature;
a summary follows them: (1) What are networks
in science and how are they defined? (2) What
structures and characteristics do such networks
have? (3) How do such networks arise and
develop? (4) What is their role in scientific
innovation?

What are Networks in Science?
In the terminology of mathematical graph theory,
graphs consist of a finite number of nodes,
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connected by vertices. If all the vertices point in
one direction, one speaks of a directed graph,
otherwise, of an undirected graph. The number
of vertices ending in a node is called the node
degree; with directed networks, an indegree is
distinguished from an outdegree. In the terminol-
ogy of social network analysis, graphs are called
networks, nodes are called actors, and vertices are
called relationships.

When speaking of networks in science, one
refers to collaboration among scientists, for
example, in the framework of experiments, pro-
jects, or publications. Such cooperative relation-
ships have the production and distribution of new
knowledge or new technologies in the fore-
ground. Here, the term social networks suggests
itself. An indicator for social networks often used
in the literature is joint authorship in the form of
co-publications (copub). These are especially
visible relationships that usually emerge from
diverse formal and informal kinds of collabora-
tion. Copub networks always consist of undi-
rected relationships.

Networks in science also include intellectual
connections among scientists arising through ref-
erence to the work results of colleagues. In the
foreground of such reference relationships is usu-
ally the embedding of new arguments and find-
ings within existing knowledge, where this is not
based on collaborations. Here, the term 'cognitive
networks suggests itself. An indicator for cogni-
tive networks often used in the literature is cita-
tion (cit) or co-citation (cocit). Here, too, one
deals with especially noted relationships to
already published knowledge, which are far
from being able to comprise all the real intellec-
tual relations of a publication. Cit networks
(A cites B, B cites C, etc.) always consist of
directed relationships, while cocit networks are
composed of undirected relationships (A and
B cite C, B and C cite D, etc.).

Social and cognitive relationships can be ana-
lyzed not only on the microlevel of scientists.
Empirical studies also investigate such relation-
ships on higher levels of aggregation. These
include research organizations, disciplinary com-
munities, national research systems, and the
global science system. The selection of the level
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of aggregation is generally determined by the
knowledge the respective study is interested in.
But analyses on a higher aggregation level also
have the advantage of using temporal and disci-
plinary limitation to counter the long-familiar
methodological problem of network analysis,
namely, that there are no clearly derivable rules
defining where a network begins and where it
should end. With the temporal limitation to spe-
cific years or decades and the factual limitation to
specific disciplinary communities (Chen and
Redner 2010), research organizations (Jones
et al. 2008; Heinze and Kuhlmann 2008), or —
as in the case of the global science system — to
selected databanks (Milojevic 2010; Jones et al.
2008), the boundaries of the networks to be inves-
tigated are defined pragmatically.

Structures and Characteristics of Networks in
Science
Once the data basis is defined, the first important
step of network analysis consists in investigating
the fundamental structures and characteristics of
the relationships. These include, in particular, the
distribution of node degrees, the network’s
degree of differentiation, and its cohesion.
Distribution of Node Degree. For some years
now, there has been intensive discussion about
how the distribution of node degrees follows
from copub and cit networks (Newman et al.
2006: 335ff). In many networks, the node
degrees are not normally distributed around the
mean, as they would be with the bell curve.
Rather, there are many extreme values, so-called
hubs, that is, actors who collaborate extremely
often or articles that are extremely frequently
cited. Networks with such hubs can be better
described with the power law distribution
(PLD), the distribution that is also valid for the
productivity of scientists (Lotka’s Law). But the
PLD typically registers only observed values
within a certain range of values that does not
cover the entire distribution. In the case of
a copub network in nanotechnology investigated
by Milojevic (2010), for example, this value
range lies between 20 and 200 coauthors.
Below the threshold of 20 coauthors, there is
a lognormal distribution.
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The distribution of the node degrees is of
great theoretical importance, because it is tied
to the question of the mechanisms responsible
for the rise and reproduction of network ties.
There is a general consensus in the literature
that the PLD results from the mechanism of
cumulative advantage (CA), which was already
described by Merton (1973). The hypothesis
here is that scientists with higher node degrees
are more likely to have new collaboration part-
ners than are scientists with lower node degrees.
Small initial differences grow over time into
greater inequality. CA thus leads to a higher
concentration of relationships in a few nodes.
The close connection between PLD and CA
means that whenever other distributions can be
shown in addition to PLD, as in the case of
Milojevic (2010), mechanisms other than CA
are obviously at work in the genesis of the net-
work. What mechanisms these are will be
discussed below (cf. section “Mechanisms of
Network Formation and Network Evolution”).

Degree of Differentiation. There is also an
intensive discussion about the effective identifi-
cation of sub-communities and thematic fields
within disciplines. In addition to the traditional
procedures of social network analysis, for exam-
ple, the analysis of cliques, clusters, or block
models, in recent years a promising algorithm
has been developed that identifies densely
connected segments of the network without
requiring knowledge of the content of the field
covered by the network (Newman et al. 2006).
Within a value area that is simple to interpret (0 <
Q < 1), this medularity algorithm measures
a network’s degree of differentiation. For exam-
ple, for the cit network of the journal family
Physical Review, Chen and Redner (2010) calcu-
late Q = 0.543, corresponding to 274 delimitable
thematic areas. These thematic areas are in turn
differentiated to different degrees. While high-
temperature superconductivity (Q = 0,198) and
Bose-Einstein condensation (Q = 0.217) have
only a few subfields, metals/alloys (Q = 0.481)
and quantum mechanics (Q = 0.447) are each
markedly more differentiated.

Cohesion is another important concept for
characterizing social and cognitive networks.
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It is measured, on the one hand, by the average
number of nodes lying between two randomly
chosen nodes. As Newman (2001) is able to
show for copub networks in various disciplines,
the average distance is about six nodes and thus
an order of magnitude comparable to that of other
social, biological, and technological networks. In
the global science system, a researcher thus needs
only six intermediate steps to reach another, ran-
domly selected researcher.

Another indicator for cohesion is the cluster
coefficient, which measures the relative fre-
quency of transitive triads (A publishes with B,
B with D, and A with D). For the aforementioned
copub networks (excepting in biology), Newman
(2001) calculates probabilities between 30% and
70% that relationships A-B and B-D will result in
a relationship A-D. These results are very similar
to the idea of Granovetter (1973) that whenever
strong relationships exist between A-B and B-D,
there is social pressure on A-D to enter into
a similarly directed relationship and thereby to
bring about a transitive triad (also: closed triad).
In the case that the relationship A-D does not
come about, the social cohesion between A, B,
and D is endangered. Granovetter (1973) coined
the triple constellation that lacks the A-D rela-
tionship a forbidden triad (also: open triad) and
points out that transitive triads arise only where
relationships are strong. Where relationships
between A-B and B-D are weak, A-D typically
do not enter into a relationship; here, B remains
a broker who mediates between A and D.
Newman’s results thereby indicate that, in the
copub networks he investigated, between 30%
and 70% of the relationships are strong. At the
same time, Newman’s findings indicate that here
there is another mechanism leading to the rise of
social relationships that effects the formation of
transitive triads (FT). The extremely low proba-
bility of transitive triads in biology (7%) is an
indication that in this discipline the majority of
relationships are weak and biologists therefore do
not customarily recruit new collaboration part-
ners from the group of their own collaboration
partners. Powell et al. (2005) confirm this finding
(cf. section “Mechanisms of Network Formation
and Network Evolution”).
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Mechanisms of Network Formation and
Network Evolution

In the booming interdisciplinary context of net-
work research on scientific innovation, an inten-
sive discussion is being conducted on what
mechanisms are crucial for the formation and evo-
lution of networks. On this, the following discusses
randomness, cumulative advantage, homophily,
trend-following, and multiple connections.

Random Attachment. In many studies, ran-
domly generated connections between actors
play an important role. This is because mathe-
matically oriented network analysis has always
studied randomly generated graphs (model net-
works) and uses the characteristics it finds in
them for comparisons with real networks (New-
man et al. 2006: 229ff). But by far, not all the
characteristics of randomly generated networks
can be found in real networks of relationships.
One especially striking deviation was found for
the aforementioned cluster coefficients, where
real networks often display a large multiple of
what is measured in randomly generated net-
works. The reason for this deviation is the afore-
mentioned FT mechanism, which ensures that
real networks consist of many small clusters
(cf. section “Structures and Characteristics of
Networks in Science”). It is interesting that the
high degree of cluster formation in real networks
leads one to expect a relatively*long average path
length. This would mean that contacts spanning
more than one cluster would be rare and that the
actors would need long routes to reach an actor in
another cluster. But as Watts (2003: 69ff) shows,
the path lengths in real networks are typically
quite short and differ only slightly from those
in randomly generated networks. Many real net-
works, and especially copub networks, display
high local densities and at the same time good
global accessibility (Newman 2001). In the liter-
ature, networks with these two opposing charac-
teristics are called “small worlds” (Newman et al.
2006: 9ft, 286ff).

How can relatively short path lengths arise
despite the FT mechanism? Watts (2003: 83ff)
argues that the short average path lengths
could be produced by reconnecting existing
relationships randomly. The underlying idea
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is simple: in networks with high local density, the
probability that a random reconnection will pro-
duce a very distant relationship is quite high. This
means that each reconnection very probably results
in a connection with a previously unconnected
cluster, which in turn reduces the average path
length. The crux of the matter in this consideration
is that randomness not only serves as heuristics
for modeling the rise of real networks. Watts
(2003) explicitly points out that forces of disorder
and unforeseeability affect every real network, so
that relationships among actors arise partially
randomly. Taking this argument seriously, then,
in the example of path length, randomness appears
as a corrective to the FT mechanism. Thus, in the
genesis of relationships between actors and in the
dynamic of networks, random connections play
a substantial role.

Cumulative Advantage. As already noted, the
CA mechanism has the effect that already reputed
and networked scientists can win new collabora-
tion partners more frequently than less well-
known or peripheral colleagues can. The logic
of CA is thereby that small initial differences
among researchers can grow over time to become
a distribution in which a few researchers have
a great many collaborative relationships and
many colleagues have only a few (PLD). In the
analysis of CA, progress has been made by car-
rying out a longitudinal study of extensive copub
networks. For example, Barabasi et al. (2002)
analyze mathematics and the neurosciences on
the global level in the years 1991-1998. New
actors and relationships are added to the network
each year, so Barabasi et al. (2002) examine two
sub-mechanisms. CA-1 means that young scien-
tists co-publish with established researchers.
Each increase of new researchers should thus
lead to an increase in the average node degree.
CA-2 means that the probability of a first-time
collaboration  between  two  established
researchers within the network increases linearly
with the frequency of their prior collaborations.
CA-1 and CA-2 are both empirically confirmed.

Trend-Following and Homophily. In the liter-
ature, it is non-controversial that CA is an impor-
tant element in the explanation of network
emergence. However, in their study of the
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dynamics and evolution of inter-organizational
networks between biotech companies in the
period 1988—-1999, Powell et al. (2005) identify
additional social mechanisms. Trend-following
(TF) means that one chooses the partner whom
one’s own circle perceives as attractive.
Homophily (HP) means that partner selection is
shaped by the principle that “birds of a feather
flock together.” Each of these mechanisms, how-
ever, has been only partially empirically con-
firmed. This means that, when choosing new
partners, the biotech companies initially take
their orientation from the conventions of their
circles. Those partners are selected whom the
circle perceives as attractive. But TF is not valid
for repeated contacts; here, the biotech compa-
nies manage to emancipate themselves from the
trend. A similar pattern emerges for HP. New
contacts are extremely frequently begun with
spatially close partners, but spatial closeness
plays no role for repeated contacts.

Multiple Connections. Whether a biotech
company repeats its collaboration with a partner
depends, rather, on whether the partner brings
diversity into the relationship and whether the
partnership holds promise of long-term gains.
Multiple  connections thus mean, first,
a preference for heterogeneity in choice of part-
ners (MC-1) and, second, a preference for deep-
ening existing partnerships (MC-2). As Powell
et al. (2005) show, in biotechnology or the life
sciences, there is a marked preference for com-
petences and contact structures that one does not
possess oneself. Collaboration partners with
a diverse contact,portfolio are thus especially
attractive, because they open up access to new
knowledge and new technologies. The great pref-
erence for heterogeneous knowledge and know-
how is reflected in the fact that young beginners
are especially coveted, in contrast to established
biotech companies (MC-1). However, Powell
et al. (2005) also show that, once a high level of
diversity is achieved, the search for new partners
slackens. In this case, the biotech company
deepens its relationships to its partners and
bonds them to it for the long term (MC-2). As
a social mechanism that steers the formation and
continuation of relationships in networks,
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multiple connections thus entail a tension
between the search for new knowledge and
know-how, on the one hand, and the search for
a stable and fruitful partnership, on the other.
Overall, the results of Powell et al. (2005) indi-
cate that MC-1 and MC-2, rather than CA, are the
dominant social mechanisms that explain the rise
and evolution of inter-organizational partner-
ships in the biotech sector. The authors thereby
confirm Newman’s (2001) finding that, in biol-
ogy and the life sciences, it is less customary than
in other disciplines to make contacts within
the circle of one’s own collaboration partners
(cf. section “Structures and Characteristics of
Networks in Science”).
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Networks are not only important in the biotech
sector but also in other scientific fields and disci-
plines. For example, Fleming et al. (2007) exam-
ine the collaborative networks of inventors in the
United States, based on 2.8 million patent speci-
fications from the years 1975 to 2002. The
starting point for this study is the question
whether brokered structures with open triads or
cohesive structures with closed triads increase the
productive capacity of networks (cf. section
“Structures and Characteristics of Networks in
Science”). The authors show that collaborative
networks with brokers often lead to technical
innovations. At the same time, however, techni-
cal innovations from brokered networks are less
frequently used again than are those from cohe-
sive networks. These results indicate that new
knowledge spreads better in socially integrated
contexts, while brokered contexts create hurdles
for the spread of new ideas. Fleming et al. (2007)
point out that there is a paradox here, namely, that
the network structures suitable for developing
technical innovations are not suitable for their
diffusion, while vice versa those network struc-
tures that are unsuitable for bringing about tech-
nical innovations are especially suitable for
spreading them. Fleming et al. (2007) sketch
a possible escape from this paradox: recruiting
actors in cohesive networks who have a broad
spectrum of knowledge, have gathered experi-
ence in various organizations, and also initiate
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contacts outside their own work contexts. In this
way, the structural disadvantages of cohesive
networks in giving rise to new ideas can be at
least partially compensated.

Networks also influence scientific productiv-
ity capacity and rankings in research. Jones et al.
(2008) show in their analysis of the 662 largest
universities in the United States that, based on the
Web of Science, in the period 1975-2005
interuniversity copub relationships more than
doubled, both among the natural and engineering
sciences and among the social sciences. Today,
about a third of all papers are published by
interuniversity teams. This growth derives essen-
tially from decades of the generally increasing
proportion of co-publications in the global sci-
ence system. Also based on the Web of Science,
Wuchty et al. (2007) calculate that, in the period
1955-2000, the number of co-publications in the
social sciences rose from 18% to 52% and in the
natural and engineering sciences from 50% to
83%. At the same time, the average number of
coauthors in the social sciences increased from
1.3 to 2.3 and in the natural and engineering
sciences from 1.9 to 3.5.

As Jones et al. (2008) further show,
interuniversity publications are cited substan-
tially more often than are publications by authors
who all belong to a single university. The greater
visibility of interuniversity publications is
unequally distributed: the greater the number of
citations from a site, the more it profits from
interuniversity collaborations. This means that
the effect of interuniversity publications on visi-
bility and thus also on scientific prestige is con-
centrated on elite organizations. Here, the gap in
visibility and prestige between elite and periph-
ery increased markedly in the period 1975-2005.
The increasing density of interuniversity copub
networks thus amplifies the already marked insti-
tutional stratification of the university system in
the United States. Finally, Jones et al. (2008)
show that collaborations between different sites
of the university elite (and incidentally also, sep-
arately, between peripheral sites) are more fre-
quent than mixed relationships. This indicates
that the aforementioned HP mechanism deci-
sively shapes the genesis of interuniversity
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relationships (cf. section “Mechanisms of
Network Formation and Network Evolution™).

Conclusion and Future Directions

In sum, it can be noted that many interesting
things about network formation, network evolu-
tion, network structures, and their influence on
innovative science are known. The availability of
large longitudinal data sets makes it possible to
conceptualize and empirically examine the con-
nection between the statistical distribution of
cognitive and social relationships, the mecha-
nisms of their emergence and reproduction, and
their role in fostering research productivity and
scientific innovation. The wide spectrum of
investigated networks has also resulted in
a better understanding of the cultural differences
between various disciplines and fields of
research. Good examples of this are the life sci-
ences, whose networks markedly differ from
other disciplines, in particular from physics
(Powell et al. 2005; Newman 2001).

With regard to the aggregation levels men-
tioned at the beginning of this entry, recent
research on networks has produced some studies
of the global science system (Wuchty et al. 2007;
Newman 2001), but the majority of the analyses
still focus on disciplines and fields of research
(Chen and Redner 2010; Milojevic 2010). In this
regard, recent interdisciplinary research on net-
works follows an established path to the disad-
vantage of research organizations. There are only
a few studies that address the theme of universi-
ties or non-university institutes, including indus-
try research, as nodes of social or cognitive
networks and their role in scientific innovation
(Jones et al. 2008; Powell et al. 2005). There is
a clear need to pay more attention to the organi-
zational level with regard to networks and scien-
tific innovation in the future.
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